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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHENICAL NOTE NO. 700

THEORY OF AUTOMATIC CONTROL OF AIRPLANES

By Herbert K. Weiss

SUMMARY

Methods of, automatlically controlling the airplapa are
reviewsd. Eguations for the controlled motion including
inertia effects of the control ares developed and methods
of 1nvestigating the stability of the resulting fifth and
higher order equations are presented. The equations for
longitudinal and lateral motiorn with both ideal and non-
1deal conitrols are developed in dimensionless form in
terms of control parameters based on simple dynamic tests
of the isolated control unik.

INTRODUCTION

Automatic control implies the process of making some
Physical quantity take on an arbitrary and predetermined
series of values without human supervision. 4 perfect
control for alrcraft would maeintain the airplane along a
desired flight path and would completely suppress undesired
disturbances in pitching, rolling, and yawing.

The means for applying such a complete consiraint %o
the airplane are lacking. In the conventional airplane,
the pilot can influence the motion only by movement of the
elevators, the rudder, the ailerons, and the throttle.

The law by which these controls are adjusted can be related
to any characteristie of the motion, but the controlling
influences can be applied only as rolling, yawing, and
Pitching moments, and as & longitudinal force.

The problem of automatic control lies in relating
these controlling influences to the natural characteris-
tics of the airplane so as most nearly to attain tho per-
formance of the perfect control.

In order to study the motion of the controlled air-
plane, it is necessary to extend the equations of motion
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to lnclude the physical characteristics of the control,
which in any actual case will not act instantaneously and
may possess various kinds of lag, In the following paper,
thereforas, attention isg firegt given to the performance of
a generplized control, isclated from its controlled mem-
ber, and the complete controlled motion of the airvlane is
then established in terms of parameters based on the free
motlion of the control.

STUDY OF TEE ISOLATED CONTROL, WITH METHODS FOR
DETERMINING THE STABILITY OF HIGHER QORDER EQUATIONS

Control Charszsocteristicse

The controls to be discussed are all "error sensi-
tive"; that is, they operate to maintain some quantity
constant but derive the impulse for thelr operation from
an error in thies quantity. Walle they can make the error
very small, they cannot entirely eliminate i%.

Three degrees of sensitivity to the error may be notod.
The control force may be a function of the error magnitude,
of the rate at which the error 1s changing, or of the sec—~
ond derivative of the error. In the most general case, the
controlling force is proportional to both the error and ite
derivatives, and may be expressed as - -

F = a;j¢ + ag§ + 53% : (1>

Minorsky (reference 1) has suggested that the error
and its derivatives might also govern the rate at which
the controlling force was applied., The two addlitional
casos that he advances may be written as

bie + bgé + bs% (2)

aF/dt

2 2 . v '
d F/d % c1€ + cae t Ca€ (3)

where
€ 1is the error {(differenco betwoen the value

desired and the actual value of_tho con-—
trolled guantity). '
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F, +the controlling force.-

a, o, and ¢, constants of proportiénélity.

The three types will be called Class I, Class II, and
Class III, respectively. It will be seen that Class I
controls allow a constant error when there is a steady
disturbing force.  This error can be reduced by increasing
the control sensitivity, but it cannot be completely elim-
inated. Most automatic controls for airplanes fall in
Class I and are usually without benefit of the derivative
components (az and az =.0). -

Case II controls are used when the controlled guanti-
ty is subjected to prolonged and slowly changing disturd-
ances. They allow ne steady—-state error under constant
disturbing influences for as long as an error 1ls present.
the controlling force increases. OCOlass III controls admit
steady~state errors only when the second derivative of tne
disturbance varies. : . -

The Control as a Simple System
In most cases, the assumpiion can be made that the
control 1s equivalent to a simple system with only one de-~
gree of freedom. The exceptions are the controls in which
two of the components have approximately equal frequencies;
in this case, the isolated contrnl may develop peculiari-
ties correspanding to a system with more than one degree
of frcedom. ¢ For practical computations, however, the con-
trol may be replaced by an equivaleni mass, equivalent
inertia, equivalent "static stability," and coupling ratios.

The control inherently possesses inertia. The smaller
ite indrtia, the more satisfactory a control is likely %o
be because the -"inertia lagh is reduced. Damping is often
added Dy design to eliminate the tendency of the control-—
controlled system to hunt. Servo mechanisms embodying hy-
draulically operated pistons may possess the equivalent of
damping because of the resistance of tho fluid in the gup-
pPly lines to change of velocity of flow.

"Static stadility" of the control .requires. that a
small departure from the neutral posgition should producec
a force in the control tending- fo return the control to
the neutral position. When the eentrollod quantity has no
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inherent stability of its own, the control will generally
require static stgdbility. Thus, an azimuth control for
airplanes must be gtatically stadle, in order that. the
airplane —« 1tself ingensgitive to direction in azimuth -
may hold a given coursse.

It will be assumed that the controls discussed are of
the type which Hazen (reference 2) calls "continuous con-
trols." Any error, however small, is considercd to pro-
duce -a corresponding controlling influence through the
mechanlism, Actual controls may have a small inactive zono
within vwhich they are iIngensitive to errors. The motion
of these controls can be determined dy solving for the 1in-
active and active regions separately, with due consldera-
tion for boundary conditions.

Response of the Isolated Control

The dynamic characteristics of a control lsolated
from its controlled system can be pbtainsed by subjecting
the control to an arbitrary forcing function. The glim-
Plest disturbance consists of the sudden application of a
constant force or displacement to the control. The theorw
for these "step functions" will now bc devaeloped.
Let
x be the position of some characteristic point on

the control, referred to the neutral position

of the control.

m, equivalent inertia of the control referred to x.

¢, equilvalent viscous resistance (damping) of the
control referred to X. '

kX, static stability of the control referred to Xx.
L, a load suddenly applied to the control.
Xp, a displacement suddenly applied to the control.

Coordinates may, of course, be linear or polar, de-
Pending on the physical arrangement of the control.

The equation of motion is, when the force step func-
tion is considered,
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L - mX - ¢Xx - kx = O - (4)
" Then let

w, be natural angular frequency of the control (~’k/m).

{ = damping ratio, the ratio of the amount of damplng
present in the control %o the amount necessary to
produce motion that is just short of being oscilla-
tory.. In terms of { and w,, egquation (4) is
then '

o+ 2w,k + w,? x-——wn (5)

and the steady-state displacement of the control is

xgs = L/k (6)

The general solution for oscillatory motion (f < 0)
may be developed as

x/x = 1—e§“?’1’° (cos.,/l-fawnt +

gs

A

sinA/zTTZ?@ﬁf)

J1-¢8
I7 the motion is undamped, this equation simplifios %o

xfx o = 1 ~ cos w,t (8)
and, when ¢ = 1.00, tﬂe motion 1s critically damped and

is expressed by

— -t t -t R :
x/xgg =1 = %% ~ w t-%n . . (s)

4 dpmping ratio greater than 1.00 produces motion
simildr vo critically damped motion dbut more sluggish and,
as it is essential that the coantrol should operate quickly,
the overdamped case will not be of great importancs.

Figure 1 illustrates the effect of varring the amount
of damping on the response of the control.

When the control is suddenly disolaced rather +4an
being disturbed By a force, the oquatisiis expressing its _
return to equilidbrium are the sgane as those prescmoa with
the exception that tho 1nit1al 1.00 is lacklng. Thusg, if
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an apsriodic control (equation (9)) is displacod so that
its position of equilibrium varies by Xp, the control

attains 1ts new equilibrium according tc the expression

x ot -t )
E; = e Wnt wyte Wy | (10)

due attention being paid to the proper signs.

Rapidity of response is desired and, since the motion
becomes slower with increased damping, it isg evident that
from this consideration damping should be small. Suffi-
cient dampling must be retained, however, to insure that
the corresponding oscillation rapidly decays.

Lag in the Control

For most controls it is a straighiforward process %o
set up the equations of controlled motlon, assuming that
the control hag no inertia, dead periocd, or frictiom, and
actg instantaneously.

It is customary to lump the deficiencies of actual
controls that prevent them from attaining this "ideal' per-
formance under the general heading of lag, and to calcu-
late their effects approximately by some semiempirical
method.

Strictly speaking, a distinction should be made dbe-
iween the lag of an inactlve zone at the neutral position
of the control, and the lag that extends over the whole
range oI operation of the mechanism, such as that caused
bty the inertia of the parts.

The methods that have been used in treating lag in a
control may be groupesd roughly under four headlings:

1. Introduction of inactive zone of bonfEbl:
2. Assgumption of constant time lag.

3, Use of semiémpirical approximations.

4. Use of control characteristics.

Hethod 1 has been demonstrated by Hazen (reference 2)
and Klemin (reference 3). The solution for the motion is
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obtained in parts, with due consideration for the boundary
conditions between regions of active and inactive control,

When lag is known to be present but cannot be exactly
evaluated mathematically, as in the case of .lag of the hu-
man pllot, several writers have used the approximstion
that the control response lags the error by a constant time
interval. Minorsky (reference 1), Callendar, Hartree and
Porter (reference 4), and Cowley (raference 5} trent lag
by mcthod 2.

Minorsky uses a Taylor!'!'s series directly so that, if
the controlling influence is a function of conditions m
seconds previous, it may be expressed in terms of present
time % as

F(t=-m) = £(t) = mfr(t) + m32l £9(8) - ... (11)
and if m is small higher order terms can be neglected

Callendar, Hartree, and Porter approach the problem
by making the usual assumptlon that the solutlion of the
differential equation is of the form

and then, if the control movés according to x at time
tT~m, the terms expressing the control influence depend on

x = Aex(t"m)._- _ _ (13)

t—m

The resulting equation is no longer linear in A
but can be solved by expanding the exponentials in a se-
ries and neglecting higher order terms, or by graphical
means (reference 4). :

Garner (reference 6) has used a simplified.methbd of
treating control lag with empirical constants, which
anounts to a consideration of the first two terms of ei-
ther of the foregoing series. The semliempirical approxima-
tione of method 3, while useful for a rough check of ‘the
effects of control lag, have the diffizulty of employing
arbitrary constants not alwvays available in any particular
case.

Msthod 4, the introductlon of the over—all freguoncy )
and the ef:octivo damping nf the control into the expression’
for the controlled motion, has been followed in the present
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raper. This procedure has the advantage of usling quanti-
ties that can be experimentally measured .in the laboratory.

The introduction of additional degrees of freedonm into
the already.complex expression for the motion of the alr-
plane necessitates the developmséiit of-.a metiod for the
treatment..of £ifth and higher order equations, Thls meth-
od will now be considered.

Higher Order'Eqﬁations'_

In order that the motion of the airplane lend 1tsolf
to mathematical treatment, it is necesesary sither tahat all
relations be linear or that only small motions be consid-
ered, The classical treatment of the mation of the air-
plane. has by now been justified 'as abplicable to disturd-
ances of appreciable magnitude. The linearity of control
response depends on the deslign of %*he contral, but violent
movements will not be expected and a linear responsc for
small digplacements 1s a fair assumption. C-

. Solution is obtained by writing the differential egqua-—
tions of motion, assumineg a solution of the form

x = g Ake%kt . . - - (14)

and eXpanding the resulting determinant intc an eguation
linear in A. The difflculty lies in the solution for the
various values of A from the eqtation, which is of the
form

ANl + DBAR=1 4 oAD=28 4 gAD=3 4 .., =0 ' (15)

Methods are available (referencé; 7 to 13) for the so-
lution of the guartic equation and for expressing the com-
bPlete motion of the uncontrolled airplane. There are also
methods of extracting the roots, complex or real, of the
guintic, sextic, and higher order equationsg (references 14,
15) that result from controlled motion; but the methods
are long and troublésome, esveclally when 1t is desired to
investigate a ranse of posgible wvariations of the control
relations. '

_ It will often be sufficient to determine simply tho
stabllity of the controlled motion.
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Methods of Routh and Hurwitz

Routh (reference 16) presents a series of tost fune-
tions which can be built up for any degree of linear equa-— -
tion and which indicate from the -coefficients of the equa-
tion whether the motion it represents will increase or de-
cay with time. The functions are obitained by writing the
sequences S '

s % o & e & & . s

5.(b07aé5 @& (ve=af) £ (bg—aﬁ) b _ .Qli).

Beginning with a, each.test function is derived
from the one vreceding it by substituting for each letter
in seguence (16), the letter or expression directly Dbelow
it in sequence (17) (substituting zero fon letters avove
those amppearing in the original equation)f] The moétion is
then stadle if the final function and the coefficients are
positive. :

Obtained in this manner, the Routhian test functio£ ,

for the quintic is : D -
L(bc -~ ad) d - b (be ~ af)} (be - af) ~ (be - ad) pg-_ '
' (18) '

Hurwitz (reference 17) gives a method of obtaining
the stability functions as an expansion of the determi-
nant

b a 0 0 0 0 0 .
d c B a 0 0 0 .

by =| £ o a c b a 0 . (19)
h 2 f e a e . b, - |

The.motion is stable if the determinant and the coef-
ficients are positive. Phis form is somewhat simpler {than
the one used by Routh for numerical substitution dut still
involves considerable work for equations above the quartic.

Before a simpler method of following. stability changes
as the relations of a mechanical system are systematically
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varied is presented, the form of the solutlon of the ogua-—
tions of motion will be discussed in more detall.

Form of the Solution

When some of the values of %k to be sﬁbstituted in

equation (14) are complex (and therefore conjugate pairs
since the coefficients of the original squation were real),
there are pairg of roots of the form a *idb. The part of
the solution corresponding to these two roots can then be
written .

x = gat (A, cos bt + Ag, sin bt) (20)

The test functions of Routh and Hurwitz, when posi-
tive, insure that a be negative, so that the oscillatlon
reprasented, decays with time. If a is zeroc, sc that A
is a pure imaginary, the term represents an unending os-
cillation, which is the boundary condition between cstadbil-
ity and instability for the term. ’

The presence of pure imaginary termg is indicated Dby
the fact that Routh's discriminant bvecomes zero. It should
be noted, however, that the discriminant is also zeroc for
more than one vair of equal pure¢ imaginary roots and, when
two sets of roots are AN, . g = Az,4 = =*ib, the motion is

unstable, being of the form

x = Ay cos bt + Az 8in bt + Lzt cos bt + Agt sin vt (21)
’ 21

Transition to Imstability

The fact that a pair of roots becomes pure ilmaginary
as the system from which the equation is derived passes
from a stable to an unstable condition is made use of in
determining the point of critical stability when some
rhysicel characteristic is varied systematically.

Define the angular freguency Ly cf & complete mechan~

ical system of any number of degrees of freedom as the fre-—
quency at which it can execute unending oscillation. Sim-
Ple systems of onc degree of freedom will oscillate endless-
ly only in the absence of damping, but more compllcatsd
systems easily and sometimes annoyingly perform self-excited
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oscillations in splte of & large amount of damping (refer-
ences 18, 19).  The expressions for natural frequency will
therefore be established in their most general form, in-
cluding damping., The most general case of unending cscil-
lation for the systems that can support more than one end-
less motion will be considered as the case in which the
corresponding equation has only one pair of imaglnary roots.

Expressions for Natural Frequency

At the boundary of trangition from stability to in-
stablility, 1% is known that two of the roots of the equa-
tion in AN are &iw,. ZEither root can then be substi-
tuted back into the original eguation, the sum of the real
and the imaginary terms be equated to zero, and the reduced
equations solved for the frequency. Performed in detail
for the cuble equation, the process is as follows

ax® + bx2® + ex + 4 = 0O

" 3 2 =
law,® - bwn + ciuh + & = O

€
o]
1l

c/a . (22_.1)
wy?® = a/v | : (22.2)

Unending oscillation is indicated when numerical sub-—
stituvion produces the same value of wy ffom both ex-

pressions. It is evident that this method is equivalent
to setting Routh's discriminant for the cubie (bc - ad)
equal to zero and, for this simple case, there isg no gain
in simplicity by performing the operation in two parts.

For the higher order equations, the bairs of expres-—
sions in W, are, when similarly obtained,

QUARTIC w,® = 4/b (23.1)
wp* = (cd - be)/va - (23.2)
QUINTIC wp® = (be -~ af)/(be ~ 2d) (24.1)

£
i

-~ (de ~ ef)/{(bc ~ ad) (24.2)
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2 .

sEXPI¢ w,® - {bo = 2d)f = b g - (25.1)
(be - 2d)d - b{be - af)

wp® =~ (a/b) wy® '+ (£/b) = 0 (25.2)

(be - ad)(fz = eh} —~ (bg - ah)2 _
(be ~ ad)(dg - ch) - (bg - ah)(bs - af)
(26.1)

(bc - ad) wy* -~ (ve ~ af) w,® + (bg ~ ah) = 0
(26.2) -

[i}

a
SEPTIC w,

The expressions were brought into the form glven by
straightforward mathematical "Jjugeling.," When a single
computation of the stability of a mechanical system is de-
sired, Hurwitz's determinant should be anumerically expand-~
ed, 28 this method will be found simvler than the several
computations necessary to determine, by means of the nat-
ural frequencies, whether the srstem is on the stable or
unstable side of the critical point,

When it g desired to observe the transition from sta-—
billity to ingtadbility of a mechanical system, as when stud-
ying the effects of control lag or inertla, the frequency
method is much more convenient than that of eithsr Routh
or Hurwitz, In addltion, when the trangition polnt has
been determined by this method, the frequency of the end-
less oscillation i1s at once available, without further
computation,. ' '

Application to Sextic Equablen

An example of. the application of the method %o a
practical case will now bve borrowed from & later section
of this report. It is desired to learn within what rango
of free natural pericd a longitudinal contrel of a glven
gsonsitivity will bo satisfactory, le.0., will not allow
self-excited oscillation.

The equation involved is a sextic, It has been de-
termined by applying Routh'!s discriminant to the gquartic
equation for the airplane motion under ideal control that.
the motion 1s stable when the natural period of the con-
trol is infinitely short (Ty = 0). As soon as a finite

natural period ig admitted, the equation of motion becomes
a sextie. In figure 2 the two expressions for natural
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frequency and Routh's discriminant .for the sextic have
been calculated and plotted against increasing natural
period of the conitrol,

By elther method, the motlon is seen to become unpta-
ble when the free natural period of the control exceeds
1.95 seconds, but the actual computations were much sim-
Pler for the freguency curves. The freguency of the un-
ending oscillation is, by inspection, about 19 radians per
second. It is interesting to note that the freguency of
the short and heavily damped oscillation of the ideally
controlled airplane considered is 16.9 radians per second.

When the system is nearly eritical, it is possible to
calculate the rate of growth or decay of the nearly end-
less oscillation by a method of Blondel's (reference 20)
which is based on the assumption that a in the root
a-ib 1is so small that higher powers of a2 are negligibdble
compared with a itself. The rcot is then substituted
back into the original equation in A, and real and imag-
inary terms are separately equated to zero, when solution
can be made for a and b. ' ;

AUTOMATIC CONTROL OF AIRPLANES

LONGITUDINAL MOTION

If the airplane is slightly disturbed in smooth air
and allowed to execute free longitudinal motion, i% will,
if dynamically stable, regain & steady~flight condition azs
the disturbed motion decays in the form of two damped os—
cillations. These two modes of oscillation consist of:

l. A heavily damped oscillation of short period (of
the order of a few seconds) involving primarily change of
incidence, in which changes of forward velocity are negli-
glblew This motion disappears almost at once, and in most
airplanes is not noticeadble as an oscillation. T

2. A long period, lightly damped oscillation involw-
ing change of forward speed, during which the airplane
rigses and falls. This oscillation depends on the drag of
the airplane for 1ts damping, and is increasingly trouble—
some on "clean" airplanes. .-

Although the short oscillation has been.soméwhat neg-
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because it dlsappears so rap-

idly, Jones (reference 21) points out.that, although the
heavy damping of this mode insures its -rapid subsidence in

calm air,

it imposes an effective restraint against move-

ments of the airplane relative to the air and causes vio-
lent movements of the airplane in rousgh alr.

according to some flight characteristic.

Law of Operating Control

The controlling moment in longitwudinal control -is ex-
erted by means of the elevators, which are then to be moved

Haus {(reference

22) zives the following table of disturbance detectors and
the quantities to which each 1s sengitive.

Ingtrument
Air-gpeced indica%or
Wind wvane

Free zyroscope, sug-
nended at ite c.zg.

Motor-driven gyro-
scope with preces~—
sional moment

Pendulum or accsler-
ometer along 0OX

A.c clerometer along

0Z
Lift indicator

Rate-of~climb meter

Torsional_accelerom-
cter about 0OY

Recorded quantity

Relative speed
Incidence

Absclute inclina-
tion

Angular vélocity

Direction of appar-
ent gravity

Magznitude . of appar--

ent gravity
Maznitude of 1ift

Speed 2long verti-
cal

Angular accolera-—
tion

du/dt and
pin 6 ’

dw/dt and

.-cos @

iv® or uw

w.or V gin 6

B

The elevators can be moved according to the indica-
tions of nny of those instruments or combinations of thom,
The most successful controls, those of Sporry (references
23, 24, 25) and Smith (reforoncecs 26, 27) are of tyve 3,
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operating according to the absolute lnclination-of the air-
planc in spaco. This type "will ‘theréfore be considered in
detail. Analysis of the other control types would be car-

ried out in a manneor similar to ‘the onoe now presonted

Equations of Gontrolléd ﬁétién

In its broadest form, the type % control possesses ve-
locity and acceleration -components (types 4 and 9). 4 gen-~
eral solution including the displacement, the rate, and the
accelcration components is no more difflcult than that for
the simple control, and .the .full form will thereforo be
congidered. B -

The elevators are linked to the control through =
gservo mechanism, so that the pltching moment varies accord-
ing to the displacement of. the control. For small motions,
a linear relation can be assumed and, for many controls,
the assumption will also be valid for large displacoments.

Since the control mechanism has inertia, an addiftional
degrese of freedom is introduced, and there are now four ei-
multaneous equations of motion:

X = n(d TWg) (27)
Z = n(y =~ Ug) : (28),
R
F o= m, ¢ (30)
where F 1is force on the control.
m,, effective inertia of the -cdontrol referred

to E.
¢, displacement of the control.
The other symbols have their usual significance.

The full exvpressions for horizontal and vertical force
are as usual, but equations (29) and (30) are now

Q)
=

By = v SM . oM , , oM |
é‘ au N oW 4 34 :

I

(31)

o))
e
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oF

ng t = 88%+a %§f+ 6o - t2 t - & aF (32)

And, of course, ¢ g% is the controlling moment

corresvonding to a control displacement £, and 6 %%
ig the force tending to operate the dbntrol for an angular

displacement of the airplane 6, The remainder of the de-
rivatives signlfy corresponding linkages. :

Writing now the full determinant for the complementary
solution where D ig the operator . d/dt,

D - Xu ~X -g 0
~Zy D~ Zy = =g¥ - DUy .0 (83)
~My LMy D° -~ DMy My
0 0 -D®Fs -DF -Fy D3+DE\E +Fg

It has been asgumed that most of the inertia of the
control is effective after the three lmpulses have besn
combined to operate the elevators, which is equivalent to
assuming that the error and the derivative controls have
equal effective inertias and dampings. While experimoental
tests are required to determine the accuracy of this assump-
tion, it is probadbly adequate for well-built controls, and
controls could certainly be built for which it would hold
exactly.

Note that in equation (33) the minor consisting of
the first three rows and columns ig the detsrminant for the
uncontrolled airplane. Set the whole determinant equal to
zero for the complementary gsolution and expand it in torms
of thls principal third order minor. This procedure gives

M, (D®F: + DFyq + F D - X, =X
Ao + £ ( 2,.9 q _6)__ u W -0
D"+ DF& + Fg ~Zy D~ Z

(34)

This form can be solved, but the final result will de
more advantageous if it is put info nondimensional form.
Going Dback to expression (23), write the dimensions of
each term.



N.A.C:4. Technical Note .No. 7Q0 17

In terms of i%s dimensions, the determinant becomes

pot p~t P2 0

p~? p—t LT~2 0
_—-1_-1 -1 =1 Y- -1 2 (35)
Al 17ty T T2

0 0 LT 2 o2

Following the same procedure as in nondimensionaliz-
ing the uncontrolled motion of the airplane, multiply the
derivatives of '

the'firét row by T
the seocond row by T
the third row dPy LT
the fourth row by T
the third column by. I ir

%he fourth column dy T

The characteristic length of the dimensionless sys-~
tem is taken as L, the length of the talil mpment arm,
The characterigtic time isg defined by '

T = mfp/2 SU) (365
On this basis, the unit of velocliy is
L/T = U/p o (37)
where » = m/(p/2 SL) | (38)

and P may be called the "relative density" of the air-
plane, being proportional to the mass and inversely pro-
Rortional to the cube of the linear dimensions of the air-
plane. Glauert notes (reference 28) that avart from the
derivative coefficicnts of the airplane, K is the only
varametor which affects the stability. '

The dimensionless form of the derivatives is as do-
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fined by Metcalf (reference 29) and other writers, dbut 1t .
is necessary to.determine the form of the control deriva-

tives.

In vassing, it should be noted. that ancther dimenslon-
less system in use 1is based on the quantity p 1instead of
p/2, as in the present paper. The mathematical expres-—
sione, however, are the same for both systems except for
this one difference, and the numerlcal values of the deriv-
atives differ only by a factor of 2.

Control Derivatives
It will be shown later that, for the purpose of this

analysis, it is only necessary to determine the ideal con-
trol derivatives mg q B
* H

The moment exerted by the'tailplane is

M = CpySy e/2 U°L (40) .

where ' ' )
GLt is tail 1if% goefficient.
S5;, tail area.
U, steady-flight airplane velocity.
L, tail moment arm.
Let 8, elevator angle.

Following the method of Koppen {reference 30) in non~
dimensionalizing the control derivatives, write

oM (ath> (as\ P 2
3E < 36/ 3 StiU (41)
9015 . _— - 3s
where 35 is obtained from wind-tunnel data, and 35
depends on the controlwcouplinp ratlos and sensitivity. ‘ v

Then
MgT2 = (3M/36) (1/B)T® = umg (42) ,
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and 3B = nmLz, where T - is the “maSs-dist?ibution fac-
tor® (reference 29) so that

_1 (OGLt <:5 St (43)
Similarliy
NERIOIOHG
= 44
Myo T Mgg (44)
thig factor is written Bye to distinguish it from %the
natural ng cf the airplane. Finally
P
s, UF L
aCLt <68\ ( % )
Mg = mg = (35 hm 1) (45)
Tho fe, fg, and mE derivatives can be odbtained in
. a similar manner, when it is desirod to evaluate thenm in

any particular problen.

The Dimensionless Dcterminantd

’ The dimenslonless form of the determinant becomes
~Zqy Dz ~u(CLY+D) 0]
- - (46)
—-my ~mg Dannmq mg
a 2 .
o} 0 Df‘e qu g _D _fg_fg

and equation (34) becomes

: a .. SN L _
A 4 om D ] 5 * qu + fQ D Xy X .
° 4 D.+Df£'+f£ -z D - zy
(47)
Call the second minor A,. Divide the numerator

and denominator of its multiplier by fg. Then
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(;%} (D £§ + DE, + fg)

2o (48)
—° L 5
A, D%/, + Dfé/fg + 1
Now
_ L aM
Mg = 3 55
1 oM
Me = 3 3¢
1 aF
Ty = 3 %E
L QF
so that
6 -
MG = Mg :_E‘-E
gimilarly
fe.
(49)

mgy = mg gg

The subscript 4 indicates that © has not been extract—
ed. This extraction could be very esasily accomplished by
proper evaeluation of the other coefficlents, such ag making

0 meg take the place of mg.

The numerator of equation (48) can now bo written in
terms of the ideal control derivaitives, that is, tho val—
ues which the control derivatives would have 1f there were
no lag in the control. That is,

Me 4 ) — -
E) 2

<E£ (D°f§ + Dfg + ufg) = DZ¥my + Dmy, + b mg (50)

Bquation (48) can then be written as follows:

D 2
by = 31(32?é+3ch+”me) + AO(E£E—+ ——) = 0 (51)

£ £
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Going: back ‘to equation (32), the control forces sum
as : :

- " . -a—F— iF- i aF * QE: - a-E 2 .
met + 6 5¢ + a S¢ " 6 2% - ¢ Y g ot (52)

and, when the error impulses are zero, the equation for
the control alone 1is i

A (53)

Compare this form with equation (5) for a generalized
system of one degree of freedom.

[ 2§cun E + w, @ tE = o ; ' (54)-

so that the F derivatives can be written in terms of the
natural frequency and the damping of the isolated control
That is,

Fg = W 2 T = (aﬂ/Tn)a - (55)

2t (em/z,) (56)

28 wy,

i

How fE = Fg Taj where T 1s the characteristic

time of the airplane, and similarly —

£ = T T
so then ) . 2 .
: fp = (2w T/Ty) (87)
£ = 2t (2w 2/1) (58)

This form 1s convenient because Tn and. § for tho

igsolated control can bo obtained by simple dynamic tests
in the laboratory. o

Substituting these values into equation (51) gives

AO—AI(D'am +Dmg Fhmg ) + B, LZD (T /21TT) + 2§(T /21-;1‘)1)] =0
‘ ‘ (59)
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This division into three major terms is very conven-
ient. If the coantrol is nearly ideal, T, 1is very small

compared with T, and the quantity in the last bracket
can be neglected, giving the equation for the ideally con-
trolled alrplane. If the airplane 1g uncontrolled, the
gecond term is zero, leaving the original determinant Ffor
the uncontrolled motion.

Although it has not been so noted, during the nondi-
mengionallizing, the opsrator D was replaced by the di-
mensionless operator DT, which was also written as D.

Effect of Ideal Control

Equation (59)is the complete form of the determinant
for controlled longitudinal motion, an abrideed form of
which, neglecting the derivative components and control
inertia, is given by Klemin (reference 3).

The effect of an ideal conitrol on thé period and the
damping of the osclllation will first be dotermined. 4As-
suming that T,/T is sufficiently small so that the third
term can be neglected, the first two terms of the equation
can be eXxpanded into the form,

a

aD* + pD® + oD% + @D + & = O (60)

Write f = 1 - my

wheres * oy 1s the natural damping in piteh of the airplane,

and Ig o ig the effective damping in pitch added by the
first derivative component of the control.

It i1s necessary here to differentiate betweon the ef-

fect of my and of _ch on the motion. Thelr offecct in

dempling an ogcillation once bogun i1s equivéient. However,
my ig derived from the relative motion of the air and the

tall surface primarily, whereas By ls derived by takling

mechanically the first derivative of the angle of pitch
snd using it to operate the elevators. Consequently, an
alrplane with large natural ng mway be expected to exe-

cute violent motion in rough air, in censequence of the re-
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straint against motion relative to the gusts. On the other
hand, an airplane heavily damped in pitch by means of the
derlvative control is restrained not relative to the air
but to a set of fixed axes in space, determined by the
ZFros.

Protection from gusts, as far as the rotary damping
is concerned, would then consist of replacement of the nat-—
ural damping by artificial damping relative to space axes,
as far as possible, with the limitation that the airplans
must stlll be controlladble manually in the event of fail—
ure of the automatic pilot.

Returning to equation (60}, the coefficients are

8 il

D = —-'f(xu+zw) Ead mql

c = £z, z_- xwzu) + mql(xu+3w)_" Wmg ~ Wmg

& = ~mgg (Zy2p=Egzy Jhbng (xy—~0p, 6)~pmy (xp+0p, Mrpmg (xyt+zg)

wzu)

(61)

The effect of My UPOR the dampling and the period

ls egqactly the same as the effect of Mg » and so it will

be sufficient to note here that increasing the gensitlvlty
of this component of the control will, over the normal-
flight range, increase the damping and lengthon the period.

e = ~Opum_(z,~x,6) - Cppm, (x 6~z ) - pmg(x,z ~x

It ‘is interesting to note that by making mn§ = 1.00,
f c¢can be made zero. This method is equivalent to giv1ng
the airplane zero inertia in pitch. The guartic equation
"theén reduces to a cubic. T

- As the mg -éontrol is the most widely used, it will
be considered first.

Effect of Simple Displacement Control

Let mg = Bge = 0. Lot the coefficients of the quar-
tic roprescnted by A, be a5, Py, Cos 45y ©p5s Thon the

effect of addineg the mg derivative is to increase these

coefficients so that
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b = by
c = cy = pmg

d = 4, + ume(xu + Zw)
e = o5 - ume(xuzw -~ Xy ) (82)

The effect of small values of mg on the long and

the shert oscillation has been calceculated for two typical
airplanesg. Alrplane 1 ig the transport considered by
Metcalf (reference 29) and Airplane 2 is a small 60-horse-
power parasol monoplane treated by Soulé and Wheatley (ref-
srence 31),

Flgure 3 glves the wvariation with mg of the poriod

and the damplng of the long oscillation. The effect of
ng on the short oscillation in the range plotted 1s gilven

by the following table for Ailrplans 2.

mg Period Time to damp te
4 amplitude
(gec.) (sec.)
0] 407 1.08
-.20 : .39 1.19
—~480 2.89 1.40

The effect of mg on the short osclllation is not

very great. - The period is shortenesd, as might be expected,
since mg 1s a spring constant in pitch. The long ogcll-~

lation shortens briefly and then, as 1ts damping lncreases,

lengthens its veriod, and finally becomes a pailr of simple
subsidences. '

With complete restralnt in pitch (me infinite), the
eguation in D reduces to

2

D7 = (xmy+zg) D+ = 0 (63)
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The success of the simple displacement control in
practice is explained by the tremendous increase in the
damping of the long oscillation. The time %o damp to %
amplitude can, in the case considecred, be reducocd from 20
to 2 seconds. For an ideal control, then, both the long
and the short oscillation would disappear almost at once
after a disturbance.

iloreover, the values of mg -used in the foregoing

example have been extremely conservative, Kiemin (refer~
ence 3), investigating this type of conirol, precsents
Mg = -~ 2,160 as a practical value for the airplane ke con-

siders and, in dimensionloss form, this valuec is cguivalont
to mg = ~ 900, approximately. Xlemin finds, in conseo-

quonce, that the long oscillation disappears completely and
is replaced by a palr of subsidences. -

It should be understood that the control does not cre-
ate any new damping. It simply makes & more economical
use of the damping that is already available in the system.
The poor distribution of damping betweon the two oscillao-
tions is well known and the me control may be considered

as & sort of equalizing valve, which allows some of the
dampineg of the short oscillation to flow into the long os-—
cillation. The simple displacement control is allowed,
therefore, by the peculiar original condition of the sys-
tem, to produee an effect comparable with that of an errer
and derivative control., Needless to say, this fact is high-
ly cdvantageous . from considcrations of mechanlcal simplicity
of the control.

Uso of the Accoleoration Component

The controlling moment can also be mado to depend on
the second dorivative of the angular displacement, which
is equivalont to increasing or docreasing the effcoctive
inortia about the lateral axis of the alrplano.

The inertia might be. incfeased (m} negative) to re-

duce the initial pitching acceleration under the influence
of susts, or it might be dscreased to permit a more rapid

damping of the subsequent motion. Simple incrsase of tho

effective inertia will not be ordinarily toleratod, howev-
er, becauso of lts unfavoradle cffoct on the stabillty oF

the motion.
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Now suppose o positive value of mg wore choson. A
simple form results if mg is taken as 1.00, as this

choice provides that the airplane have zero effective in-
ertla in pitch. The coefficients of the reduged equation
then .bear the relation %o the original equation.that

a =0

b= Mgy

¢ = ¢y = (Xyzyg-xXyzy) = very nearly c,
d = dg,

e = e,

A few trial calculations show that my affects the

short oscillation almost exclusively, which might be ex-
pected on noting that only the first two coefflclents are
greatly changed by mp. A very gocd approximate factorlza-
tion, since b is large, is . ' i

(D + 1) (D% + (pe - 4)/p® D + &/b) =0 (64)

and the short oscillation becomes a heavily damped subsid-~
ence, with the long oscillatlion practically unchanged. 3Butb
tho short osclllation was already satlsfactorily well
damped. Therefore, the use of a positive accoleration con-~
ponent of the contrcl docs not seom tec be justified, and
the introduction of a negative mg componeont would bo sat-

isfactory only if it wore solective, operating only to op-
pose movenent away from equilidbrium.

Introduction of Control Lag

Actual controls frequently exhidbit a fast residual os-—
cillation, which one writer (reference 27) describes as the
egffect of the control trying to act upon the short oscilla-
tion, More exactly, this new oscillation 1s probadly
caused by the addltional degree of freedom supplied by the
control, and certainly depends on control inertia.

In order to investigate the nature of this residual
oscillation, the full form of eguation (59) will now be
used, except that the two derivative drives will be neg-
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lected, because they are not at'bresent ineorporated in
the Snerry or the Smith controls. The equation ig then

b = &y umg + A4 LD (Tn/EwT) + 2§(Tn/2nT) DJ 0 (65)

Let . .- ‘
., o= T_/Tnan o . (66)

Let the coefficients of & “Dbe a b c e

(6} o’ o? o do’ s}
and the coefficients of Aoz {the ideally controlled de-
terminant) be a,, b,, ¢y, d,, ;.

Then, wri%iﬁé equation (85) as the sextic
. aD® + D% + cD* + ap® + eD® + £D + g = 0 (87)
the coefficients. of. the- sextlc are, in terms of the coef~

ficlents of the ideally controlled and. the uncontrolled
. motion, : . . :

aw=-r2;T:

. _ ’ 2.. -
b =2{r + b,
e =1 +-2§rbO + r2c,

d = b, + 20re, + r2d,
e = ¢, + 2fra, + raeo-
..f';'dl + Zgreo

g =8y -- N o (68)

The effect of increasing the natural period and the
damping of a control for a given airplane and a given stat-
ic linkage ms can therefore be carried through in an or-
derly manner by the use of the relations given in egua~
tions (868). This procedure has heen carried out for a typ—
. ical case.

One of the fdcal eesee'treaped_was for mg = - 0.50.
This case has been extended to include control inertia and
damping. It is very easy to write -down the sextic, dut
its solution is not an enjoyadvle task, although there are
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methods oface¢omplishing the solution. It 1g much easier
simply to determine the effect on the stability of the mo-
tion of allowing the control inertia to become finite.

Effect of Inertia Lag on Sﬁability

The simple quartic for the uncontrolled motion was
D* + 4.20 D3 + 11,96 D2 + 1,94 D + 1.30. = O

and when mg = -0.50, +this expféssioh_ﬁécoﬁes"

* 4+ 4.20 D® + 20.96 D® + 19.40 D + 7.70 = O

D
This equation is for the airplane of reference 31,
and the derivatlives wereo baged on p instead of p/2.
The damping ratio of the control was held constant at
£ = 0.20 while the natural period T, -was increased from

zero. The stability changes were followed by both Routh's
diseriminant for the sextlc, and the uge of the simultana-—
ous equations in natural freguency. The results have al-
ready been glven in figure 2. The alrplane becomes un-—
stable when tho natural period of the control cxceeds 1.94
seconds. '

IEffect of.Damping'in the Control

In order to determine the effect of control danping
on stability, the definitely unstable case of Ty = 2.40

seconds was reconsidered with the damping ratio of the
control increased to 1.00, that is, critical damping.
Routh's discriminant then became positive and equal to
1,275, Increasing the damping then restores stability or,
in other words, postpones the eritical point of neutral
stability.

Although it may seem contrary to common sense to 1lm-
prove the stability by making the control act less rapid-
ly, it will be remembored that the uncontrolled alirplano
was stabdble, and adding an infinite amount of dampling to
the control can do no worse than restore it to this stato.
If the airplane were originally unstable, damping might
eventually have an adverse effocet.

As in the constant-spced control, where the effoct
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has been discussed in detail (reference 32), damping in
the control allows the initial surge error to be somewhat
larger on account of the sluggishness of the control, dutb
successive error surges are reduced because the tendency
of the conirol to overshoot has been curbed.

Damping ig not completely beneficial, but it can com-
pensate for the worst property of controls, which 1is. iner-
tla lag, Stability of the motion is attained by damping;
good performance is attained by reducing control inertis.

Solution of the Critlcal Case

When the natural period of the control.is 1.94 sec-
onds, the motlon becomes critically stable, and an unend-—
ing oscillation 1is present. ZFrom the intersection of the
two curves for the frequency,.the froquency of this oscilla-
tion is w,® = 19. Two of the roots of the sextic are then

known, and tho sextic can be factorocd into
(0% + 19) (p* + 6.45D® + 35D° + 37D + 15)
The quartic can be solved ﬁy Zimmorman's method
(D + 19) (D® + 1.20D + 0.52) (D® + 4.25D + 28.8) =

Compare this with the factorization for the 1ldeal conw
trolled airplane with no control inertis

(D + 1,15D + 0.455) (D® + Z.05D + 16.9)

The long oscillation has hardly been affected. It
seems Jjustifiabls, theni to obtain a rough factorizagtion
of the sgextiec in any case below the critical by dividing ~
through by the quadratic factor of the ideal- quartic, which
corresponds to the long oscillation,. : .

The short oscillation is also not greatly modified.
It is the new, or'residual!" oscillation introduced by the
control that becomes unstable. Because of the characteris—
tics of the linkages, the residual oscillation apparently -
becomes unstable when 1ts period approaches that of. the
short oscillation,

The period of the residual oscillation shortens and
its domping improves ag the inertia of the control is re-
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duced; the oscillatlon vanighos completoly for an ideal
control.

Determination of Control Frequency and Damping

The convenience of the representation of the control
es a single degree of frcedom system is seen when the lab-
oratory procedure necessary to obtain Tn, Z, and mg 1isg

outlined. The complete control, with dummy control sur~
faces suitably weighted to represent their equivalent in-
ertia in flight, 1s mounted on a test platform so that it
can be easily rotated (in pitch for a longitudinal con-
trol). The platform is given a very sudden change in in~
cliration, and the resvonse of the conitrol is recorded by
means of a pencil or equivalent recording means, attached
to an output memdber, such as & control push rod of ths
mechanism. From the record, which may show a damped oscil-
lation or an aperiodic approach to the new position, the
damping ratio and the natural frequency of the control can
be determined by elementary vibration formulas.

The ideal control derivative mg is determined dy

noting the stoady-state control angle for a given angular
displacement of the disturbance indicator of the control.
Given this ratio, mg 1is determined from equation (43).

Only three quantities are required, and they are the
" three that express the effect of the control on the motion
of the airplane. Therefore, they also serve as conven-
ient means of comparing one control against another of the
same type. -

Methods of obtaining advantageocus values of the three
varameters remailn in the province of detailed coatrol de-
sign, but the parameters offer a meansg of determining the
suitability of .an oxisting control for a partlcular alr-
plane.

Suppression of Disturbances in Gusts

Insuring a rapid docadence of motions once beogun is
only half the job of a successful automatic control. Tho
other half consigte of the reduction of initial error
surges from the desircd course, as the airplane oncounters
an oxternal disturbance.

The magnitude of the surge error can be investigated
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with the aid of operational calculus. or by means of mechan-
ical methods of solution, such as the differential analyzer.

The iniﬁial acceleration of the alrplane under the in-
fluence of various kinds of gust can be written for each
of the three degrees of freedom as follows,

Gust Initial - Derivative
T : -7 acceleration depends on B
Vertical - v, xwwq _Igduced drag
- ZgWo Aspect ratio
mW  Static stability
Head or Tail - U X% ; Total drag
Z,, %0 Lift
m, W, " Power application
Rotary gust -~ 4, xqqo
Zq%
ny 4, Tall size and effi-~

clency

*These two are negligible.

In. order to reduce the effect of the gust in any case,
the corresponding derivative should be made small, If the
derivative is zero, the airplane will not be affected by a
gust in that sense. Because the motions in each degree of
freedom are related, however, an alrplane with, say, my, =

zero would develop a pitching motion in response to a head
gust, but the original forcing function womld be applicd
only as o vertical and a horizontal force.

The only derivatives that can be modified appreociably
by the designer are the statlc stadbility nmy and the damp-
ing my,. ZExperimental data (referencc 33) indicate that,
in gcngral, airplanes with short period and heavy dampling
do the most pitching in rough air, corresgponding roughly to
large m; and large mg -
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The initlal accelerations of the airplane represonted
by myv, and mgde can then be reduced, and tho stabll-
ity of the airplane will not bc impaired if- the reduced
derivatives are augmented by mg and Dge supplied by
an automatic pilot. The wvalue of mg is not numerieally

equivalent to myp Dbut has a simlilar.effect, being, 1in fact,

e much more desirable derivative as it allows a more sat-
isfactory distribution of damping, both ng and Dgeo be-

tween the two oscillations.

Systematic computations by Haus (referencs 34 ) shows
that, even in the absence of the automatic pilot, reduc-
tion of m. reduces the violence of the motion.

Unfortunately, little can be done to reduce the ini-
tial response of the airplane to a vertical gusit. Fecr
the first second or so, the motion is given very cloasocly
by :

w/wg = 1 ~ eth/T _ (69)

and zy, depending on aspect raties, cannot be reduced ap-
preciably. This situation might have been foreseen for,
if the alr supporting the airplane riges, the alrplane it-
self must modify its course in space.

Once started, however, the dlsturbed motion can be
made to disappsar muchk more rapidly with the aid of an au-
tomatic pilot, as Klemin has shown (reference 3) by & num-
ber of calculations. Klemin also shows that the vortiecal
motion in response to a head gust is very nuch eased by an
mg control. Wilson, in an early paper on the effoct of

guste (reference 35), also indicated the beneficlal effects
of a complete congtraint in pitch.

Conclusgions

On the basis of the material presonted, someo genecral
conclusions can be drawn concerning the operation of a con-
trol sensitive to the angle of »nitch and its dorivatives.

In tho absence of complete experimental dota, the conclu-
slons must be presented with the rescrvation that, while
they satisfy available data, very little data arc availadblo.

l. The control with gyroscopic referencoe glves tho
airplane sonsltlvity with respect to axes fixed inm space.

>



" N.A.C.&A. Technical Note No..700 33 -

2. The simple pitch control readjusts the propor-
tions of the system, -so that the available damping is more
equally distributed between the long and the short oscil-
lation, with the result that the long oscillation can be
made to disappear as rapidly. as the shorst oscillation and
to take on the form of two simple subsidences.

3. The benefit of the simple partial restraint in
pitch, therefore, is derived from the ability of the dis-
Placoment control ‘o act as an equivalent rate control,

4, The additieh of an actual rgte control increases
the damping in pitch (mq) of the airplane, without in-

creasing the sensitivity (q mq) to a rotary gust.

S. Thore is no advantage in using an unseclective
second derivative control and not much _advantage 1n using
a selective control. :

64 Inertia in the control introdiuces a third oscilla-
tion which can be mistaken for the short oscillation when
it becomes troublesome.

7. The third oscillation becomes unstable when the
inertia of the control is increased beyond & critical value
determined by the airplane characteristiCs and the control
damping ratio.

8. Damping in the control reduces the effoctiveness
of the control, but stabilizes the residual ogecillation.

‘g, Fllght in rough air will be improved (greater
course stability) by reducing the static stability (m )

and the natural damping in pitch (m Y, and by adding'aﬂ

gutomatic control to supply sensitivity to angle of pitch
(me) and absoluto damping in pitech (ch).

CONTROLLED LATERAL MOTION

The latoral motion of the airplane for small disturb-
ances consists of translation along the ¥ axis (sideslip)
and rotations about the X and Z axes (rolling and yawing)
The uncontrolled motion is represented by an equation of _
the fifth degree, of which one'of -the rootg is zero, signi-
+fying that the airplane is insensitive to direction in az-
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imuth, In the remaining quartic, one of the rcdots 1s very
large compared with the remaining three, ond is very near-
ly equal to the damping in rell. -That is to say, the re-
slstance of the airplane to rate of roll is so large that
the rolling subsidence proserves its character in spite of
the other latoral motions of the airplane. The rolllang
motion disappears almost at oncec in normal flight and may
glve trouble only at the stall. )

Of~the remaining throe. roots, two are conJugate com-
plex and one ig real, defining an oscillation and a subsid-
ence (or divergence). The only airplane characteristics
influencing the roots at the disposal of the designer are
the amount of dihedral and the amount of fin and rudder
area. Generally speaking, a large amount of static sta-
bility causes the real roet to become negative (spiral in-
stability) while an excess of negative static stabllity
beyoné a small minimum value will cause the oscillation to
become firet of increasging magnitude and then to sevarats
into a rapidly increasing exvonential mode (reference 38).

Controlled Lateral Motion

The .lateral motion is controclled by the ruddsr about
the yawing axis and by the ailerons about the rolling axis.
The ailerons, as a rule, in asddition to exerting a rolling
moment, will alsoc epply a yawing moment, usually of oppo-
site sign to the direction of the desired turn and of the
order of a tenth the rolling moment.

The rudder .control, if actuated by azimuth indlca-
tions, makes up for the natural deficiency of the airplane
in azimuth. But the provision of a sense of dlrection
does not guarantee adequate damping of the motion. The
use of an angle of yaw control is .in this respect not 8o
fortunate as the addition of an angle of pitch control for
thoe longiltudinal motion. The rolling subsldence remains
voary rapid, the original short-period oscillation is sen-
sibly unchaneged (reference 6), vut the slow spiral diver-
gence or sudbsidence formerly present has now become a long-
period banking and yawing oscillation which may be poorly
damped and which depends on the dihedral of the airplane
for the regulation of its period, of the order of 15 to 20
seconds (reference 27).

The motion ¢an be modified by operating the rudder or
the ailerons according to other characteristics of the mo-~
tion.
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Haus (reference 37) has given the following tadble of
disturbance detectors, according to the indications of
which the ailerons or rudder can be operated.

Instrument Recorded gquantity Symbol
1. 7Vane with vertical Angle of sideslip %/u
axis ' S
2., Pree gyroscope Yaw with respect to 4
axes fixed in
space -
3« Free gyroécope Roll with respect to 2}
axes fixed in T
space =
4. Gyroscope produc-— Angular velooity of T
ing precegsional rolling ' ) -
couple ) B
5. Gyroscope, or dif- Angular voloeclty of T
ference in 1lin- yawing ‘ T
ear speed of wing
tips =
6. Peoendulum in ZOY Direction of appar- & sin o
plane, or acceler- ent gravity +dv/at+Vr
omoter along 0OY . _ ST e
7,8 Torsional accoler-— Angular accelera- é,“
ometers about tion about OX and
X and 72 axes 0z - )
9. Compass Yow with respect to "WW:__

earth's magnetic
field

It may be stated as fundamental that the primary pur-

pose of the lateral conmtrol is to give the alirplane sensi-
tivity in ezimuth. In this respect, 1t differs from the
longitudinal control that operated to improve course sta-
bility already present. Secondary control components are
then used to improve the resulting motion. :
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The Spsrry control operates the allerons according to
angle of bark to improve the motion, and the Smith control
employs both aileron and a component of rudder motlon pro-
rortional to angle of bank. The Askanla control moves the
rudder according to both angle and rate of yaw. Garner
has shown (reference 6) that all these socondary controls
affect the damping of the oscillations. The rate of yaw
control, however, affects the short oscillation almost ex-
clusively instead of the long~period "course" oscillation
which it was intended to improve. The ailleron controls
improve the motion by modifying the distribution of damp-
ing although they are simple displacement controls.

Lag in the Control

There are two separate controls, &s a rule, for the
rudder and the ailerons. Consequently, two additional
equations of motion are introduced, one for each new de-,
gree of freedom, and the determination of the complete mo~
tion willl requlire theo solution of a ninth~order equation.

It 19 possible that the highest order terms may be
neglected, or that lag in the aileron control may bo nog-
lectod compared with lag in the rudder control, becauss of
the much greater damping in roll than in yaw. Sufficient
calculations are not yet available, however, to endorse
such simplifications.

Following the method of introducing control inertia
and damving that was treated in detaill under longitudlnal
control, the complete esquations of controlled lateral mo-
tion will now be presented, for an airplane with rudder
and allerons moved according to angles aprd first and sec-—
ond derivatives of yaw and roll. This arrangement 1s
analogous to the control provided by the Sperry Gyropilot,
except for the addition of the derivative components.
Controls using other laws of operation can be similarly
analyzed.

Equations of Motion

For simplicity, the airplane will be considered in
level flight-so that 90 = 0, and the product ¢f inertia

E will be considored small enough to be neglected. The
equations of lateral motion are thon
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Y = m(dv/dat+Ur) (70)
L = A dp/at _(71)
¥ = C dr/at - (72)

Where Y 1ig lateral force, L is rolling moment, and
N is yawineg moment. :

There are two scparate controls, one for the ailerons,
and one Zfor the rudder. Let ' - :

F, force on aileron control.
T, force on rudder control.

£, digplacement of alleron control.

i, displacemert of ruddor control. ) )

Force derivatives for thoe controls are obtainocd in the
same mannher as force and momont derivatives for tno air-
plane.. Thus,

Fg = (l/mcontrol) (B_F/aﬁ,) GtC- - (73)

Then the free motion of ocach bontrol, with no forc-
ing function or external forcoc acting can be written as

o] : (74)

Aileron control (D° + DR + Fg) ¢

Rudder control (D% + DTh + Tnl m 0 (75)

These two egquations define the natural period and
the damping of each control,

The full set of simultaneous equations for the com-
plementary solution of the motian of the controlled air-
plane is given by e
Side force

(D-¥y) v + (~Ty) » + (DUY ¥ + 0 + Q = O (76)

Rolling moment

(<L, v + (DP=DLy)@ + (~DL )W + (~Ig)E 0 - (7?)_
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Yawing moment

Aileron contral force

2
0 + (=D Qb”DFp

N.A.C.A.

Rudder control force
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(=Ny)v + (~DNy )@ +(D3~DNT)W-+(-Ng)g + (~Nqp)7N = 0 (78)
2 ey -

-gp)m + 0 + (D +DFE+rg)§ + 0 =0 (79)

= 0 (80)

0+ 0 + (=DF TY-DT Ty W + 0 + (DQ+DTn+Th)n

Dimensions of Determinant

It is again desired to have the derivatives dimen~

sionless.

The dimensions of the determinant resulting

from the foregoing equations are

m— 3 LT 2
1~lp—1 o2
L—-l fa T-—a

L7 2
0

78 0 - 0
P2 L—ip—2 0
m—2 1"ip2 " p—2
0 2 )
LT 2 o A (81)

In order to make this expression dimensgionless, mul-

tiply
the
the
the
the

the

The unit of time 1g again

firet line
second and
gsecongd and

fourth row

by T
third lines by TL
third columns by T/L

and column by T

fifth row and coclumn by T

T = m/(p/2 SU), Ddut the

unit of length according to Koppen's notation is the wilng

semigpan

(p/2).
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Expansion of the Determinant

As in the longitudinal case, the determinant can be
expanded in terms of ideal control derlvatives and the
control frequencies and the damping ratios, so that it
willl not be necessary here to svaluate the coupling terms
Lg, Ng, NT[' etc.

Certain minors of the full determinant will be used
sufficiently often to justify a general symbol. Let the
dimensionless determinant for the uncontrolled airplane
be A, . Then : :

4 = - Vg a® - aly, A (82)
- By ~dn., a? - an,
Also let
d - Y dp .
b, = (83)
Vg =4l 5
d -y dp .
by = v (84)
Ny a2 - dnr :
d - 3F |33 GL
Ay = M . (85)
~Lv ac - de
Now also assume the shorithand notation that
2
“D I@ + Dch + 1¢
LgF = ) ] (886)
- DE(T,p/emD)® + D2l (T,,/2mT) + 1

D® ne + Dn + n
= P be ¢ (87)

n =
ks D% (7, JonT)® + D2y (T, . /27T) + 1
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D® ne. + Dn + n
= @ re v (88)

p¥(r, /onT)® + D2ly(T, /2nT) + 1

ang

Note that, if the yawing momeant of the allerons ls
assumed to be proportional to the rolling moment over the
normal range of alleron asngleg,

ngr = k ez (89)

where k 1s a constant of ﬁroportionality.

In terms of these minorg and fractions, the fifth-
order determinant can now be expanded into a form more
convenient for treatment.

Expanded Form of the Determinant

The expansion 1s of the form

uncontrolled alleron yaw aileron roll rudder yaw +
airplane com—~ component component component
ponent
rudder yaw ,
aileron roll
* side force =0 ] (50)
component

Written symbolically, this equation becomes
ﬂo + nEF Al — lﬁF AE - nnT A.S + nnT'ZgF(D*yv) = 0 (91)

It is interesting to note that, when the rudder 1is
moved according to the angle of roll, the effoct corre-
sponds to the yawing action of the ailerons and 1s thero-
fore included in the second term of equation (91). Thus,
rudder movement according to this relation can be mado to
balance exactly tho adverse yawing moment of the ailerons.
The operation is one that human pilots perform instinctive-~
ly.
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It is Interesting to compare the effects of the wvar-
ious components of control outlined in the foregoing on

the motion of the airplane.
controls of the rudder and allerons are perfectly quick

If the simple displacement

the alrplans ig completely restrained in roll

and yaw, and equatlion (91) reduces to simply

D—y.v.=0

(92)

which denotes a subsldencs in sidesiip, detoermined by the
slde force produced by sideslipping.

minant 4, which, when expanded, gives an equation of the

The uncontrolled motion is roepresented by the deter~

form

ers

D% + pD* + oD% + aD® + eD = O

(93)

The effect of the control derivatives is to increaée or
decrease these coefficlents or %o raise them to higher pow-~

of D.

Suppose,

first,

that the controls are ideal,

and that they are simple displacement controls with no de-

rivative componentse.

cients can be tabulated.

Add %o
coeffi-
clent

Rudder mo-
ment pro-
vportional
to yaw

0
~pniy
wn gy (b +¥ )
~pny (L 7y)

Rudder moment
proportional
to angle of"
bank

0
0
~hngp(ly)

bty ( Lr.;fvwiv )

"!-"n\y([-ﬂr CL')'

0

Alleron yaw-
ing moment
proportional.
to angle of
bank '

0
0
“Mm(tr)
g (Vp ¥y +0ly )
0

Then the additions to the coeffi-~

Aileron rolling
moment propor-
tional %o an-
gle of bank

0
ke
Blep (nptye)

~hly oy 7y +ing )

(94)

When both rudder displacement proportional to yaw and ai—
leron displacement proportional to angle of bank are pres-
there is an additional cross—nroduct term

ent,
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oy Blp(D = yy) {95)

Discussion -

In order that there be course stadbllity, £ must be
greater than zero, If a rudder control is used alonse,
then faor £ to be positive 1 must be greater than szero
numorically (negative in this system of units; tv is the

derivative depending on dihedral and with lv zero (slight
negative dihedral), the pilot cannot maintain coursge sta-
bility without the aid of the ailerons. Addltlon of the
simole aileron control adds a term from (95) proportional
to Vs the side force in sideslip, and this term in-

[y

creases the course static stadbilliy.

If £ were gero, e would determine the splral sta-
bility of the airplane. For most airplanes, e 1is negae-
tive, indicating a divergence. If a simple aileron con-
trol is added alone, the positiveness of e can be ln-
creased and the airplane made gpirally stable regardless
of a small deficlency of dihedral.

When the rudder control is added, the airplane cannoil
be spirally unstable, and the term e becomes indicative
of, but not the criterion of, the damping of the course
oscillation. The damping is evidently improved by large
dihedral, side area, and control derivative 1.

None of these simple controls affects b, which very
closely ropresents the rolling subsidence, Therefore,
this component of the motilon will be substantially un-
changod by the controls in normal flight.

A satisfactory approximate factorization has not yet
been developed for the short oscillation, but its damplng
is probably improved by a large value of -coefficient c.

The effect of the first and the second derivative
components in the controls is to ralse the individual
termg of (94) by one and two rows, respectively, and to
add them to the original simple displacement components.
That is, in the first column, the =n control contributes
-pny to the ¢ coefficient. An nype component will con-
tridbute —unn, to the b torm. And so on with the re-

maining terms,
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More detailed conclusions will require extensive cal-
culations. o -

Nonideal Controls

There is no difficulty in expanding equation (91),
when the controls do not have negligible inertia. Neglect-
ing the higher derivetive components of the control, which
are treated in a2 similar manner, and letting

D% (1, ,/2mT)® + Dacl(mnl/zﬂ) = G, etec. {96)
Equation (91) expands to |
(C1+1)(Ca+1) A  + (Cy+1) nepd, - (C1+1) Tpdy ~
- (Ca+1) nyldsz + nwlw(D-yv) =0 (97)
or, when separated into ideal and nonideal componentsi-’

Ideal by + Dy = Tpla ~ nybds + #wlng—yV)

)
First order contribution +(01+Ca)Ao+01(mpbl~tmﬁ2)~canwés

Second order contribution + &, C3 &, =.0 : (98)

When either the rudder or the aileron control is being
considered alone, the frequency expression simplifies con-
gsideradvly. In its full form as given, it involves a ninth-
order equation, but O0yCa 1is prabadly very small compared
with the first-order terms, and possibly may be neglected.

The stability ef the motion can then be investlgated

by means of the natural-frequency expressions for the sep-
tic. . ‘ '

January 18, 1939.
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Figure 2.~ Comparison of methods for ietermining stabllity of
sextic equation.
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